CHANGE 1

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR OSCILLOSCOPE TEKTRONIX, MODEL 2465

Headquarters, Department of the Army, Washington, DC 6 June 2008

Distribution Statement A: Approved for public release; distribution is unlimited.

TB 9-6625-2293-24, 26 November 2007 is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages 17 and 18

Insert Pages 17 and 18

2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

GEORGE W. CASEY, JR. General, United States Army Chief of Staff

Official

JOYCE E. MORROW
Administrative Assistant to the
Secretary of the Army

0810111

Distribution:

To be distributed in accordance with IDN 344488, requirements for calibration procedure TB 9-6625-2293-24.

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR OSCILLOSCOPE TEKTRONIX, MODEL 2465

Headquarters, Department of the Army, Washington, DC 26 November 2007

Distribution Statement A: Approved for public release, distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also send in your comments electronically to our E-mail address: 2028@redstone.army.mil or by fax 256-842-6546/DSN 788-6546. For the World Wide Web use: https://amcom2028.redstone.army.mil. Instructions for sending an electronic 2028 can be found at the back of this manual.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	3
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment setup	7	4
		Low frequency response	8	6
		Vertical gain	9	6
		Triggering	10	9
		Timing	11	12
		Bandwidth	12	18
		Calibrator	13	20
		Final procedure	14	20
	IV.	MENU CALIBRATION PROCESS		
		Preliminary instructions	15	20
		Equipment setup	16	21

^{*}This technical bulletin supersedes TB 9-6625-2293-35, dated 7 October 2003.

	Paragraph	Page
Power supply	17	22
DAC REF and input capacitance	18	22
CAL 01 horizontal	19	24
CAL 02 vertical	20	27
CAL 03 triggering	21	30
CAL 06 vertical transient response	22	30
Final procedure.	23	33

SECTION I IDENTIFICATION AND DESCRIPTION

- 1. Test Instrument Identification. This bulletin provides instructions for the calibration of Oscilloscope, Tektronix, Type 2465. The manufacturer's manual was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b. Time and Technique.** The time required for this calibration is approximately 6 hours, using the dc and low frequency technique.

2. Forms, Records, and Reports

- **a.** Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **b.** Adjustments to be reported are designated (R) at the end of the sentence in which they appear. Report only those adjustments made and designated with (R).
- **3.** Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument parameters	Performance specifications							
Vertical gain								
GTT4 1 GTT5								
CH1 and CH2	Range: 2 mV/div to 5 V/div							
Delta V cursors	Accuracy: ±2% Accuracy: ±(1.25% of reading +.03 div)							
	· ·							
CH 3 and CH 4	Range: 0.1 and 0.5 V/div							
	Accuracy: ±10%							
Trigger CH 1 and CH 2								
Level readout	Accuracy: Within \pm [3% of setting +3% of p-p signal +0.2							
	division +(0.5 mV x probe attenuation factor)]							
Sensitivity								
Dc coupled	0.35 division dc to 50 MHz							
	1.0 division at 500 MHz							
Ac coupled	0.35 division 60 Hz to 50 MHz							
	1.0 division at 500 MHz							

Table 1. Calibration Description - Continued

Test instrument parameters	le 1. Calibration Description - Con-	specifications			
Timing	Toriormane	Specifications			
A sweep	Range: 500 ms/div to 5 ns/div extend				
	Accuracy: 500 and 200 ms/div $\pm (1.2)$	*			
	100 ms to 5 ns/div \pm (0.7% of time interval + 0.6% of FS)				
	X10 mag: $\pm (1.2\% \text{ of time interval} +$	0.6% of FS)			
B Sweep	Range: 50 ms/div to 5 ns/div extende	ed to 0.5 ns with X10 mag			
1	Accuracy: $\pm (0.7\% \text{ of time interval} + 0.6\% \text{ of FS})$				
	X10 mag: ±(1.2% of time interval +	0.6% of FS)			
4 11					
A sweep delta time with cursors	Accuracy: ±(0.5% of time interval	Ť.			
	X10 mag: $\pm (1\% \text{ of time interval} +$	- 0.3 % of FS)			
Delta time with sweep delay	A	1 + 0 10/ - C ECV			
Delta time with sweep delay	Accuracy: $\pm (0.3\% \text{ of time interval} + 0.1\% \text{ of FS})$				
Delay sweep	Accuracy: ±(0.3% of delay setting	g + 0.6% of FS) + 0 to -25 ns			
Frequency Response	VOLTS/DIV	With internal $50~\Omega$			
	switch setting	termination			
$3\mathrm{dB}$ bandwidth CH 1 and CH 2	2 mV	Dc to 100 MHz			
	5 mV or greater	Dc to 300 MHz			
-4.7 dB bandwidth CH 3 and					
CH 4	0.1 V or 0.5 V	Dc to 300 MHz			
Ac coupled lower -3 dB point	10 Hz or less				
Calibrator					
Output voltage	Range: 0.4 V				
	Accuracy: \pm 1% into 1 M Ω load				
Donatition named	Range: two times the A SEC/DIV setting for SEC/DIV from 200				
Repetition period	ns to 200 ms	iv setting for SEC/DIV from 200			
	Accuracy: ±0.1%, during sweep to	ime			

SECTION II EQUIPMENT REQUIREMENTS

- 4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Sets AN/GSM-286, AN/GSM-287 or AN/GSM-705. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment selected is shown in parenthesis.
- **5.** Accessories Required. The accessories required for this calibration are common usage accessories issued as indicated in paragraph 4 above and are not listed in this calibration procedure. The following peculiar accessories are also required for this calibration: Standardizer, 5-80 pF; BNC plug to BNC jack (7916146).

Table 2. Minimum Specifications of Equipment Required

~	* ***	T
Common name	Minimum use	Manufacturer and model
	specifications	(part number)
MULTIMETER	Range: 0 to 20 V	Fluke, Model 8840A/AF05 (AN/GSM-64D)
	Accuracy: ±0.025%	
OSCILLOSCOPE	Volts out:	Fluke, Model 5820A-5C-GHZ (5820A-5C-GHZ)
CALIBRATOR	Range: 10 mV to 20 V	
	Accuracy: ±0.5%	
	Time markers:	
	Range: 0.5 ns to 0.5 s	
	Accuracy: ±0.175%	
	Pulses:	
	Risetime: ±0.225 ns	
	Sine wave frequency:	
	Range: 1 Hz to 500 MHz	

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b.** Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
- c. Unless otherwise specified, verify the results of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual for this TI.
- **d.** When indications specified in paragraphs **7** through **13** are not within tolerance, perform **SECTION IV**, **MENU CALIBRATION PROCESS**. After adjustments are made, repeat paragraphs **7** through **13**. Do not perform **SECTION IV** if all other parameters are within tolerance.
 - e. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of the calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

a. Connect TI to a 115 V ac source.

NOTE

When **POWER** pushbutton is pressed to **ON**, TI automatically performs a self-test sequence. Upon successful completion of self-test, TI will be in normal operating mode.

b. Press POWER pushbutton to ON and allow at least 20 minutes for equipment warm-up.

NOTE

If TI crt displays **DIAGNOSTIC**, **PUSH A/B TRIG TO EXIT** at power on, one of the power-up tests has failed. If the error message on the bottom line of the display is **TEST 04 FAIL xx** where **xx** is **01**, **02**, **10**, or **11**, stored calibration data is in error. If this error message is displayed, press **A/B TRIG** pushbutton to exit diagnostic mode and perform **SECTION IV**. If any other error message occurs, the failure is probably not related to calibration. In this case, the instrument should be repaired before attempting calibration.

- c. Press corresponding pushbutton for indications as listed in (1) through (9) below:
 - (1) VERTICAL MODE CH 1 and CH 2 on.
 - (2) VERTICAL MODE CH 3 and CH 4 off.
 - (3) **VERTICAL MODE ADD** and **INVERT** off.
 - (4) **VERTICAL MODE CHOP/ALT** to **ALT**.
 - (5) **20 MHz BW LIMIT** to off.
 - (6) TRACK/INDEP to INDEP.
 - (7) **TRIGGER SLOPE** to + (plus).
 - (8) ΔV and Δt off (cursors off).
 - (9) **X10 MAG** to off (out).
- **d.** Set corresponding switches for indications as listed in (1) through (4) below:
 - (1) **TRIGGER MODE** up to **AUTO LVL**.
 - (2) TRIGGER SOURCE up to VERT.
 - (3) TRIGGER COUPLING up to DC.
 - (4) CH 1 and CH 2 input coupling up to 1 M Ω AC.
- **e.** Position controls as listed in (1) through (10) below:
 - (1) **VERTICAL POSITION** to midrange.
 - (2) CH 1 and CH 2 VOLTS/DIV to 100 mV and VAR control cw to detent.
 - (3) A SWP and B SWP SEC/DIV to 1 ms (knobs locked).
 - (4) **SEC/DIV VAR** cw to detent.
 - (5) Horizontal **POSITION** to midrange.
 - (6) **TRIGGER LEVEL** to midrange.

- (7) **TRIGGER HOLDOFF** fully ccw to **MIN**.
- (8) **TRACE SEP** fully cw.
- (9) **SCALE ILLUM** fully ccw.
- (10) INTENSITY, FOCUS, and READOUT INTENSITY for suitable viewing.
- **f.** Press **VERTICAL MODE CH 2** pushbutton to off (out).

8. Low Frequency Response

a. Performance Check

- (1) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1** to TI **CH 1** and oscilloscope calibrator **SOURCE/MEASURE CHAN 2** to TI **CH 2**.
- (2) Set oscilloscope calibrator for a **CHAN 1**, **WAVE GEN sine** mode output of **50 kHz** and adjust amplitude for 6 divisions of vertical display on TI.

NOTE

Set A SWP SEC/DIV switch as necessary to view signal.

NOTE

To perform step below, press oscilloscope calibrator **EDIT FIELD** pushbutton as required to place underline under one of the frequency digits.

- (3) Decrease oscilloscope calibrator frequency until display is 4.2 divisions. If oscilloscope calibrator frequency is not 10 Hz or less perform **b** below.
- (4) Press TI **VERTICAL MODE CH 1** pushbutton off and **VERTICAL MODE CH 2** pushbutton on and change oscilloscope calibrator output from **CHAN 1** to **CHAN 2**.
 - (5) Repeat technique of (2) and (3) above for CH 2.
 - (6) Disconnect equipment setup.
 - b. Adjustments. Perform SECTION IV below.

9. Vertical Gain

a. Performance Check

- (1) Press **VERTICAL MODE CH 1** pushbutton on and **VERTICAL MODE CH 2**, **3**, and **4** pushbuttons to off.
 - (2) Press **20 MHz BW LIMIT** pushbutton on.
 - (3) Set CH 1 and CH 2 input coupling switches down to 1 M Ω DC.
 - (4) Set A SWP SEC/DIV switch to 1 ms.
 - (5) Set CH 1 VOLTS/DIV switch to 2 mV.
- (6) Push up and momentarily hold both CH 1 and CH 2 input coupling switches in their 1 M Ω AC position until a moving dot display replaces the normal signal and readout displays DC BALANCE IN PROGRESS. This performs a dc balance of CH 1 and CH 2.

- (7) When signal and readout displays automatically return to normal, set CH 1 and CH 2 input coupling switches down to 1 M Ω DC.
- (8) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1-4** outputs to TI **CH 1-4** inputs respectively.
- (9) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **10 mV** at 1 kHz frequency.
- (10) Rotate oscilloscope calibrator knob below **EDIT FIELD** pushbutton to adjust amplitude for 5 divisions of deflection on TI. If oscilloscope calibrator **Err** display does not indicate within limits specified in first row of table 3, perform **b** below.
- (11) Repeat technique of (5), (9) and (10) above for settings listed in table 3. If oscilloscope calibrator **Err** display does not indicate within limits specified in table 3, perform **b** below.

Table 3. Vertical Gain CH 1

Test ins	strument	Oscilloscope calibrator		
VOLTS/DIV	Vertical deflection	CHAN 1 VOLTAGE	Err display	
switch settings	(divisions)	output	Indication (%)	
2 mV	5	10 mV	± 2	
5 mV	4	20 mV	± 2	
10 mV	5	50 mV	± 2	
20 mV	5	0.1 V	± 2	
50 mV	4	0.2 V	± 2	
100 mV	5	0.5 V	± 2	
200 mV	5	1.0 V	± 2	
500 mV	4	2.0 V	± 2	
1.0 V	5	5.0 V	± 2	
2.0 V	5	10.0 V	± 2	
5.0 V	4	20.0 V	± 2	

- (12) Press VERTICAL MODE CH 2 pushbutton on and VERTICAL MODE CH 1 off.
- (13) Set CH 2 VOLTS/DIV switch to 2 mV.
- (14) Set oscilloscope calibrator for a **CHAN 2**, **VOLTAGE** mode output of **10 mV** at 1 kHz frequency.
- (15) Rotate oscilloscope calibrator knob below **EDIT FIELD** pushbutton to adjust amplitude for 5 divisions of deflection on TI. If oscilloscope calibrator **Err** display does not indicate within limits specified in first row of table 4, perform **b** below.
- (16) Repeat technique of (13) through (15) above for settings listed in table 4. If oscilloscope calibrator **Err** display does not indicate within limits specified in table 4, perform **b** below.

Table 4. Vertical Gain CH 2

Test ins	trument	Oscilloscope calibrator		
VOLTS/DIV	Vertical deflection	CHAN 2 VOLTAGE	Err display	
switch settings	(divisions)	output	Indication (%)	
2 mV	5	10 mV	± 2	
5 mV	4	20 mV	± 2	
10 mV	5	50 mV	± 2	
20 mV	5	0.1 V	± 2	
50 mV	4	0.2 V	± 2	
100 mV	5	0.5 V	± 2	
200 mV	5	1.0 V	± 2	
500 mV	4	2.0 V	± 2	
1.0 V	5	5.0 V	± 2	
2.0 V	5	10.0 V	± 2	
5.0 V	4	20.0 V	± 2	

- (17) Press **VERTICAL MODE CH 2** pushbutton off and **VERTICAL MODE CH 3** pushbutton on.
 - (18) Press CH 3 VOLTS/DIV pushbutton out to display .1 V on crt.
- (19) Set oscilloscope calibrator for a **CHAN 3**, **VOLTAGE** mode output of **0.5 V** at 1 kHz frequency. If waveform displayed is not between 4.5 and 5.5 divisions, perform **b** below.
 - (20) Press CH 3 VOLTS/DIV pushbutton in to display .5 V on crt.
- (21) Change oscilloscope calibrator output amplitude to 2 V. If waveform displayed is not between 3.6 and 4.4 divisions, perform **b** below.
- (22) Press **VERTICAL MODE CH 3** pushbutton off and **VERTICAL MODE CH 4** pushbutton on.
 - (23) Press CH 4 VOLTS/DIV pushbutton out to display .1 V on crt.
- (24) Set oscilloscope calibrator for a CHAN 4, VOLTAGE mode output of **0.5** V at 1 kHz frequency. If waveform displayed is not between 4.5 and 5.5 divisions, perform **b** below.
 - (25) Press CH 4 VOLTS/DIV pushbutton in to display .5 V on crt.
- (26) Change oscilloscope calibrator output amplitude to 2 V. If waveform displayed is not between 3.6 and 4.4 divisions, perform **b** below.
- (27) Press VERTICAL MODE CH 1 pushbutton on and VERTICAL MODE CH 2, 3, and 4 off.
- (28) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **10 mV** at 1 kHz frequency.
 - (29) Press ΔV pushbutton to indicate ΔV (cursors on).
- (30) Set CH I VOLTS/DIV switch to 2 mV and adjust CH 1 VERTICAL POSITION control to center waveform on display.
 - (31) Adjust AREF OR DLY POS control to align reference cursor with bottom of waveform.
- (32) Adjust Δ control to align Δ cursor with top of waveform. If ΔV readout does not indicate within limits specified in first row of table 5, perform **b** below.

(33) Repeat technique of (28) and (30) through (32) above for settings listed in table 5. If ΔV readout does not indicate within limits specified in table 5, perform **b** below.

Table 5. Delta Volts with Cursors

		,	
Test instrument	Oscilloscope		
VOLTS/DIV	calibrator	Test instrument ΔV	readout indications
switch settings	output settings	Min	Max
2m V	10 mV	9.81 mV	10.20 mV
5 mV	20 mV	19.6 mV	20.4 mV
10 mV	50 mV	49.0 mV	50.9 mV
20 mV	0.1 V	98.1 mV	102.0 mV
50 mV	0.2 V	196 mV	204 mV
100 mV	0.5 V	490 mV	509 mV
200 mV	1.0 V	0.981 V	1.02 V
500 mV	2.0 V	1.96 V	2.04 V
1.0 V	5.0 V	4.90 V	5.09 V
2.0 V	10.0 V	9.81 V	10.2 V
5.0 V	20.0 V	19.6 V	20.4 V

b. Adjustments. Perform SECTION IV below.

10. Triggering

a. Performance Check

- (1) Press ΔV pushbutton to off (cursors off).
- (2) Push TRIGGER MODE switch down to NORM.
- (3) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **10 mV** at 1 kHz frequency.
 - (4) Set CH 1 VOLTS/DIV switch to 2 mV.
- (5) Adjust **TRIGGER LEVEL** control for most positive voltage that produces a barely triggered display for both + and **SLOPE**. If **A TRIGGER LEVEL** readout indication is not within limits specified in + peak column of table 6 for 2 mV setting, perform **b** below.
- (6) Adjust **TRIGGER LEVEL** control for most negative voltage that produces a barely triggered display for both + and **SLOPE**. If **A TRIGGER LEVEL** readout indication is not within limits specified in peak column of table 6 for 2 mV setting, perform **b** below.
- (7) Repeat technique of (5) and (6) above for remaining **VOLTS/DIV** switch settings and oscilloscope calibrator outputs listed in table 6.

Table 6. A Trigger Level Readout

m	,			The second secon							
Te	est				Test instrument trigger level readout indications						
instru	ıment	Oscille	oscope		+ P	eak			– P	eak	
VOLT	S/DIV	calib	rator								
swi	tch	out	put	M	in	M	ax	M	in	M	ax
setti	ings	sett	ings								
2	mV	10	mV	8.5	mV	11.5	mV	-1.2	mV	1.2	mV
5	mV	20	mV	17.3	mV	22.7	mV	-2.1	mV	2.1	mV
10	mV	50	mV	44.5	mV	55.5	mV	-4.0	mV	4.0	mV
20	mV	0.1	V	89	mV	111	mV	-7.5	mV	7.5	mV
50	mV	0.2	V	177	mV	223	mV	-17	mV	17	mV
100	mV	0.5	V	449	mV	551	mV	-36	mV	36	mV
200	mV	1.0	V	0.90	V	1.10	V	-70	mV	70	mV
500	mV	2.0	V	1.78	V	2.22	V	14	V	.14	V
1.0	V	5.0	V	4.50	V	5.50	V	35	V	.35	V
2.0	V	10.0	V	9.0	V	11.0	V	-0.7	V	0.7	V
5.0	V	20.0	V	17.8	V	22.2	V	-1.4	V	1.4	V

- (8) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **10 mV** at 1 kHz frequency and set TI **CH 1 VOLTS/DIV** switch to **2 mV**.
- (9) Pull **SEC/DIV** knob out and press **A/B TRIG** pushbutton for **B TRIGGER** and push **TRIGGER MODE** down for **TRIG AFT DLY**. Adjust **TRIGGER LEVEL** for a stable display.
 - (10) Adjust **ΔREF OR DLY POS** control for a delay readout of **0.000 ms**.
- (11) Adjust **TRIGGER LEVEL** control for most positive voltage that produces an intensified point on waveform display for both + and **SLOPE**. If **B TRIGGER** level readout indication is not within limits specified in + peak column of table 7 for 2 mV setting, perform **b** below.
- (12) Adjust **TRIGGER LEVEL** control for most negative voltage that produces an intensified point on waveform display for both + and **SLOPE**. If **B TRIGGER** level readout indication is not within limits specified in peak column of table 7 for 2 mV setting, perform **b** below.
- (13) Repeat technique of (8) and (10) through (12) above for each remaining **VOLTS/DIV** switch setting and oscilloscope calibrator output listed in table 7.

Table 7. B Trigger Level Readout

Table 1. B Higger Bever Readout								
Test		Test in	Test instrument trigger level readout indications					
instrument	Oscilloscope	+ P	eak	– Peak				
volts/div	calibrator output settings	Min	Max	Min	Max			
2 mV	10 mV	8.5 mV	11.5 mV	-1.2 mV	1.2 mV			
5 mV	20 mV	17.3 mV	22.7 mV	-2.1 mV	2.1 mV			
10 mV	50 mV	44.5 mV	55.5 mV	-4.0 mV	4.0 mV			
20 mV	0.1 V	89 mV	111 mV	-7.5 mV	7.5 mV			
50 mV	0.2 V	177 mV	223 mV	-17 mV	17 mV			
100 mV	0.5 V	449 mV	551 mV	-36 mV	36 mV			

Table 7. B Trigger Level Readout - Continued

								
Test		Test instrument trigger level readout indications						
instrument	Oscilloscope	+ P	Peak – Peak					
VOLTS/DIV	calibrator							
switch	output	Min	Max	Min	Max			
settings	settings							
200 mV	1.0 V	0.90 V	1.10 V	-70 mV	70 mV			
500 mV	2.0 V	1.78 V	2.22 V	14 V	.14 V			
1.0 V	5.0 V	4.50 V	5.50 V	35 V	.35 V			
2.0 V	10.0 V	9.0 V	11.0 V	-0.7 V	0.7 V			
5.0 V	20.0 V	17.8 V	22.2 V	-1.4 V	1.4 V			

- (14) Reduce outputs to minimum and disconnect equipment setup.
- (15) Press **TRIGGER SLOPE** pushbutton for + (plus).
- (16) Set TRIGGER COUPLING switch down to AC.
- (17) Set TRIGGER MODE switch up to RUN AFT DLY then press A/B TRIG pushbutton and set TRIGGER MODE switch up to AUTO LVL.
- (18) Set CH 1 VOLTS/DIV switch to 10 mV and A SWP SEC/DIV switch to 10 ms (knob locked).
- (19) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1** and **2** outputs to TI **CH 1** and **2** inputs respectively.
- (20) Set oscilloscope calibrator for a CHAN 1, WAVE GEN (WAVE sine) mode output 35 mV at a 60 Hz frequency, and adjust amplitude for 3.5 divisions of vertical display on TI.
- (21) Set **CH 1 VOLTS/DIV** switch to **100 mV** and adjust **TRIGGER LEVEL** control for a stable display. If a stable display cannot be obtained, perform **b** below.

NOTE

Set A SWP SEC/DIV switch and press X10 MAG pushbutton as necessary to obtain a well-defined display of test signal.

- (22) Insert a 50 Ω feedthrough termination into connection.
- (23) Set CH 1 VOLTS/DIV switch to 10 mV and press 20 MHz BW LIMIT to off.
- (24) Set oscilloscope calibrator for a **CHAN 1**, **LEVEL SINE** mode output of **50 MHz** and adjust amplitude for 3.5 divisions of vertical display on TI.
- (25) Set **CH 1 VOLTS/DIV** switch to **100 mV** and adjust **TRIGGER LEVEL** control for a stable display. If a stable display cannot be obtained, perform **b** below.
 - (26) Remove 50 Ω feedthrough termination from connection.
- (27) Set **TRIGGER COUPLING** switch up to **DC** and repeat technique of (20) through (26) above.
- (28) Set oscilloscope calibrator for a **CHAN 1**, **LEVEL SINE** mode output of **500 MHz** and adjust amplitude for 1.0 division of vertical display on TI.
- (29) Adjust **TRIGGER LEVEL** control for a stable display. If a stable cannot be obtained perform **b** below.

- (30) Set TRIGGER COUPLING switch up to AC and repeat technique of (28) and (29) above.
- (31) Press **VERTICAL MODE CH 1** pushbutton off and **VERTICAL MODE CH 2** pushbutton on.
 - (32) Change oscilloscope calibrator active output from CHAN 1 to CHAN 2.
 - (31) Repeat technique of (16) through (30) above for CH 2.
 - b. Adjustments. Refer to SECTION IV below.

11. Timing

a. Performance Check

- (1) Press VERTICAL MODE CH 1 on and VERTICAL MODE CH 2, 3, and 4 off.
- (2) Set TRIGGER COUPLING switch up to DC.
- (3) Press **X10** MAG pushbutton to off.
- (4) Set oscilloscope calibrator for a CHAN 1, MARKER mode output of 5 ns /div.
- (5) Set A SWP SEC/DIV switch to 5 ns (knobs locked).
- (6) Set CH 1 VOLTS/DIV switch for approximately 2 divisions of display.
- (7) Adjust **TRIGGER LEVEL** control for a stable display.
- (8) Adjust horizontal **POSITION** control to align 2^d time marker with 2^d vertical graticule line.
- (9) Rotate oscilloscope calibrator knob located below **EDIT FIELD** pushbutton to align 10th time marker with 10th vertical graticule line. If oscilloscope calibrator **Err** display and TI linearity are not within limits specified in first row of table 8, perform **b** below.
- (10) Repeat technique of (4) through (9) above for remaining TI settings and oscilloscope calibrator outputs listed in table 8. If oscilloscope calibrator **Err** display and TI linearity are not within limits specified in table 8, perform **b** below.

Table 8. A SWP Timing

Test instrument	Oscilloscope calibrator			
A SWP SEC/DIV	MARKER	Err display		
setting	output	limit		
		(%)		
5 ns	5 nS/D	± 1.45		
10 ns	10 nS/D	± 1.45		
20 ns	20 nS/D	± 1.45		
50 ns	50 nS/D	± 1.45		
100 ns	100 nS/D	± 1.45		
200 ns	200 nS/D	± 1.45		
500 ns	500 nS/D	± 1.45		
1 μs	1 μS/D	± 1.45		
2 μs	2 μS/D	± 1.45		
5 μs	5 μS/D	± 1.45		
10 μs	10 μS/D	± 1.45		
20 μs	20 μS/D	± 1.45		
50 μs	50 μS/D	± 1.45		

Table 8. A SWP Timing - Continued

Test instrument	Oscilloscope calibrator		
A SWP SEC/DIV	MARKER	Err display	
setting	output	limit	
		(%)	
100 μs	100 μS/D	± 1.45	
200 μs	200 μS/D	± 1.45	
500 μs	500 μS/D	± 1.45	
1 ms	1 mS/D	± 1.45	
2 ms	2 mS/D	± 1.45	
$5~\mathrm{ms}$	5 mS/D	± 1.45	
10 ms	10 mS/D	± 1.45	
20 ms	20 mS/D	± 1.45	
50 ms	50 mS/D	± 1.45	
100 ms	100 mS/D	± 1.45	
200 ms	200 mS/D	± 1.95	
500 ms	500 mS/D	± 1.95	

- (11) Set A SWP SEC /DIV switch to 5 ms and press X10 MAG pushbutton on.
- (12) Change oscilloscope calibrator output to .5 mS/D.
- (13) Adjust horizontal **POSITION** control to align 2^d time marker with 2^d vertical graticule line.
- (14) Rotate oscilloscope calibrator knob located below **EDIT FIELD** pushbutton to align 10^{th} time marker with 10^{th} vertical graticule line. If oscilloscope calibrator **Err** display does not indicate within ± 1.95 percent, perform **b** below.
 - (15) Press **X10 MAG** pushbutton to off.
- (16) Set A SWP SEC/DIV switch to 10 ns, and B SWP SEC/DIV switch to 5 ns and push knob in for B SWP only.
 - (17) Set oscilloscope calibrator for a CHAN 1, MARKER mode output of 5 ns /div.
 - (18) Adjust **TRIGGER LEVEL** control for a stable display.
- (19) Adjust horizontal **POSITION** control to align 2^d time marker with 2^d vertical graticule line.
- (20) Rotate oscilloscope calibrator knob located below **EDIT FIELD** pushbutton to align 10th time marker with 10th vertical graticule line. If oscilloscope calibrator **Err** display does not indicate within limits specified in first row of table 9, perform **b** below.
- (21) Repeat technique of (16) through (20) above for remaining TI settings and oscilloscope calibrator outputs listed in table 9. If oscilloscope calibrator **Err** display and TI linearity are not within limits specified in table 9, perform **b** below.

Table 9. B SWP Timing

Test instrument Oscilloscope calibrator				
A SWP SEC/DIV	B SWP SEC/DIV	MARKER	Err display	
switch setting	switch setting	output	limit	
			(%)	
10 ns	5 ns	5 nS/D	± 1.45	
20 ns	10 ns	10 nS/D	± 1.45	
50 ns	20 ns	20 nS/D	± 1.45	
100 ns	50 ns	50 nS/D	± 1.45	
200 ns	100 ns	100 nS/D	± 1.45	
500 ns	200 ns	200 nS/D	± 1.45	
1 μs	500 ns	500 nS/D	± 1.45	
2 μs	1 μs	1 μS/D	± 1.45	
5 μs	2 μs	2 μS/D	± 1.45	
10 μs	5 μs	5 μS/D	± 1.45	
20 μs	10 μs	10 μS/D	± 1.45	
50 μs	20 μs	20 μS/D	± 1.45	
100 μs	50 μs	50μS/D	± 1.45	
200 μs	100 μs	100 μS/D	± 1.45	
500 μs	200 μs	200 μS/D	± 1.45	
1 ms	500 μs	500 μS/D	± 1.45	
2 ms	1 ms	1 mS/D	± 1.45	
5 ms	2 ms	2 mS/D	± 1.45	
10 ms	5 ms	5 mS/D	± 1.45	
20 ms	10 ms	10 mS/D	± 1.45	
50 ms	20 ms	20 mS/D	± 1.45	
100 ms	50 ms	50 mS/D	± 1.45	

- (22) Set A SWP SEC/DIV switch to 10 ms and B SWP SEC/DIV switch to 5 ms and push knob in for B SWP only.
 - (23) Press X10 MAG pushbutton on.
 - (24) Change oscilloscope calibrator MARKER mode output to .5 mS/D.
- (25) Adjust horizontal **POSITION** control to align 2^d time marker with 2^d vertical graticule line.
- (26) Rotate oscilloscope calibrator knob located below **EDIT FIELD** pushbutton to align 10th time marker with 10th vertical graticule line. If oscilloscope calibrator **Err** display does not indicate within ± 1.95 percent, perform **b** below.
 - (27) Press X10 MAG pushbutton off.
 - (28) Press Δt pushbutton on (cursors on).
 - (29) Change oscilloscope calibrator MARKER mode output to 5 nS/D.
 - (30) Set A SWP SEC/DIV switch to 5 ns (knob locked).
- (31) Adjust ΔREF or DLY POS control to align one cursor with 2^d time marker and Δ control to align other cursor with 10^{th} time marker. If Δt readout indication is not within limits specified in first row of table 10, perform **b** below.
- (32) Repeat technique of (29) through (31) above for remaining settings listed in table 10. If Δt readout indications are not within limits listed in table 10, perform **b** below.

Table 10. A SWP Cursor Timing

Table 10. A SWP Cursor Timing				
Test instrumen		Test instrument		
A SWP/SEC/DI	7 calibrator	Δt readout	indications	
switch settings	output	Min	Max	
5 ns	5 nS/D	39.65 ns	40.35 ns	
10 ns	10 nS/D	79.30 ns	80.70 ns	
20 ns	20 nS/D	158.6 ns	161.4 ns	
50 ns	50 nS/D	396.5 ns	403.5 ns	
100 ns	.1 μS/D	793.0 ns	807.0 ns	
200 ns	.2 μS/D	1586.0 ns	1614.0 ns	
500 ns	.5 μS/D	3965.0 ns	4035.0 ns	
1 μs	1 μS/D	7.93 µs	8.07 μs	
2 μs	2 μS/D	15.86 μs	16.14 μs	
5 μs	5 μS/D	39.65 μs	40.35 μs	
10 μs	10 μS/D	79.30 μs	80.70 μs	
20 μs	20 μS/D	158.60 μs	161.40 μs	
50 μs	50 μS/D	396.5 μs	403.5 μs	
100 μs	.1 mS/D	793.0 μs	807.0 μs	
200 ms	.2 mS/D	1586.0 μs	1614.0 us	
500 μs	.5 mS/D	3965 μs	4035 μs	
1 ms	1 mS/D	7.930 ms	8.070 ms	
2 ms	2 mS/D	15.860 ms	16.140 ms	
5 ms	5 mS/D	39.65 ms	40.35 ms	
10 ms	10 mS/D	79.30 ms	80.70 ms	
20 ms	20 mS/D	158.60 ms	161.40 ms	
50 ms	50 mS/D	396.5 ms	403.5 ms	
100 ms	.1 S/D	793.0 ms	807.0 ms	
200 ms	.2 S/D	1579 ms	1622 ms	
500 ms	.5 S/D	3945 ms	4055 ms	

- (33) Set A SWP SEC/DIV switch to 10 ns and B SWP SEC/DIV switch to 5 ns (knob out).
 - (34) Press Δt pushbutton to off for **DLY** readout.
 - (35) Press Xl0 MAG pushbutton to on.
 - (36) Press A/B TRIGGER pushbutton for B TRIGGER.
 - (37) Set TRIGGER MODE switch down to RUN AFT DLY.
 - (38) Change oscilloscope calibrator **MARKER** mode output to **10 nS/D**.
- (39) Set **VOLTS/DIV** switch as required for a display of 3 to 6 divisions and adjust **ΔREF OR DLY POS** control for **DLY 10.64 ns**.
 - (40) Adjust TRIGGER LEVEL control as required for a stable display.
- (41) Adjust horizontal **POSITION** control cw until the trace stops moving, then ccw to display leading edge of the 2^d time marker near graticule center.
 - (42) Change oscilloscope calibrator MARKER mode output to 5 nS/D.
 - (43) Press Δt pushbutton to obtain Δt display and push in SEC/DIV knob for B SWP only.

- (44) Adjust Δ control for a Δt readout indication near -10.00 ns to superimpose the two time markers. If Δt readout indication is not within limits specified in first row of table 11, perform **b** below.
- (45) Repeat technique of (44) above for remaining Δt readout indications listed in table 11. If Δt readout indications are not within limits specified in table 11 with the two time markers superimposed, perform **b** below.

Table 11. Delta Time Display

rabie II. Beita Illie Bieplay				
Test instrument				
Δt readout	Δt readout in	dication limits		
indications	(1	ns)		
(ns)	Min	Max		
-10	- 10.14	- 9.86		
0.0	-0.10	0.10		
10	9.86	10.14		
20	19.84	20.16		
30	29.80	30.20		
40	39.78	40.22		
50	49.74	50.26		
60	59.72	60.28		
70	69.68	70.32		
80	79.66	80.34		

- (46) Press **Xl0** pushbutton to off. Set **A SWP SEC/DIV** switch to **20 ns** and **B SWP SEC/DIV** switch to **5 ns** (knob out).
 - (47) Press X10 MAG pushbutton on and Δt pushbutton off for DLY readout.
 - (48) Change oscilloscope calibrator **MARKER** mode output to **20 nS/D**.
- (49) Adjust ΔREF OR DLY POS control for DLY 21.25 ns and horizontal POSITION control to position leading edge of 2^d time marker near graticule center.
 - (50) Change oscilloscope calibrator MARKER mode output to 5 nS/D.
- (51) Press Δt pushbutton to obtain a Δt display and push in **SEC/DIV** knob for **B SWP** only.
- (52) Adjust Δ control for a Δt readout indication near -20.00 ns to superimpose the two time markers. If Δt readout indication is not between -19.75 ns and -20.25 ns with the two time markers superimposed, perform b below.
- (53) Adjust Δ control for a Δt readout indication near 20.00 ns to superimpose the two time markers. If Δt readout indication is not between 19.75 ns and 20.25 ns with the two time markers superimposed, perform b below.
- (54) Adjust Δ control for a Δt readout indication near **160.00** ns to superimpose the two time markers. If Δt readout indication is not between **159.30** ns and **160.70** ns with the two time markers superimposed, perform **b** below.
- (55) Press **X10 MAG** pushbutton to off. Set **A SEC/DIV** switch to **50 ns** and **B SEC/DIV** switch to **5 ns** (knob out).
 - (56) Press X10 MAG pushbutton on and Δt pushbutton off for DLY readout.

- (57) Change oscilloscope calibrator MARKER mode output to 50 nS/D.
- (58) Adjust ΔREF OR DLY POS control for DLY 53.2 ns and horizontal POSITION control to position leading edge of 2^d time marker near graticule center.
 - (59) Position calibration generator controls for **5 nS/D** output.
- (60) Press Δt pushbutton to obtain a Δt display and push in **SEC/DIV** knob for **B SWP** only.
- (61) Adjust Δ control for a Δt readout indication near -50.0 ns to superimpose the two time markers. If Δt readout indication is not between -49.30 ns and -50.70 ns with the two time markers superimposed, perform b below.
- (62) Adjust Δ control for a Δt readout indication near **50.00** ns to superimpose the two time markers. If Δt readout indication is not between **49.30** ns and **50.70** ns with the two time markers superimposed, perform b below.
- (63) Adjust Δ control for a Δt readout indication near 400.00 ns to superimpose the two time markers. If Δt readout indication is not between 398.30 ns and 401.70 ns with the two time markers superimposed, perform b below.
 - (64) Press **TRACK/INDEP** pushbutton for **TRACK**.
- (65) Press X10 MAG pushbutton to off. Set A SWP SEC/DIV switch to 100 ns and B SWP SEC/DIV switch to 10 ns (knob out).
 - (66) Press X10 MAG switch on.
 - (67) Change oscilloscope calibrator MARKER mode output to .1 μS/D.
- (68) Press Δt pushbutton on and adjust Δ and ΔREF or DLY POS controls for a Δt readout of (eight times A SWP SEC/DIV setting) 800.0 ns.
- (69) Adjust horizontal **POSITION** control to align leading edge of 2^d time marker on A sweep with 2^d vertical graticule line.
 - (70) Adjust **TRACE SEP** control ccw to separate traces.
- (71) Adjust ΔREF OR DLY POS control to intensify 2^d and 10^{th} time markers of A sweep and display leading edges of displayed B sweep time markers near center graticule line.
- (72) If horizontal distance between leading edges of B sweep time markers is not 3.4 divisions or less, perform **b** below.
 - (73) Press **X10 MAG** pushbutton to off.
- (74) Set A SWP SEC/DIV switch to 200 ns and set B SWP SEC/DIV switch to 20 ns (knob out).
 - (75) Press Xl0 MAG pushbutton on.
 - (76) Change oscilloscope calibrator MARKER mode output to $.2 \mu S/D$.
 - (77) Repeat technique of (68) through (72) above.
 - (78) Press Xl0 MAG pushbutton to off.
- (79) Set **A SWP SEC/DIV** switch to **500 ns** and set **B SWP SEC/DIV** switch to **5 ns** (knob out).

- (80) Change oscilloscope calibrator MARKER mode output to .5 μS/D.
- (81) Adjust Δ and ΔREF OR DLY POS controls for a Δt readout of eight times A SWP SEC/DIV setting.
- (82) Adjust horizontal **POSITION** control to align leading edge of 2^d time marker on A sweep with 2^d vertical graticule line.
 - (83) Adjust **TRACE SEP** control ccw to separate traces.
- (84) Adjust ΔREF OR DLY POS control to intensify 2^d and 10th time markers of A sweep and display leading edges of displayed B sweep time markers in center area of graticule.
- (85) If horizontal distance between leading edges of B sweep time markers is not 3.4 divisions or less, perform **b** below.
- (86) Repeat technique of (79) through (85) above for settings listed in table 12. If horizontal distance between leading edges of B sweep time markers is not 3.4 divisions or less, except where noted, perform \mathbf{b} below.

Table 12. Delayed Sweep Delta Time

	10010 12.	Test instrument			
011	1	. ~		1	
	loscope	A SWP		B SWP	
calib	orator	SEC	/DIV	SEC/DIV	
	tput	swi	tch	switch	
set	tings	sett	ings	set	tings
1	μS/D	1	μs	10	ns
2	μS/D	2	μs	20	ns
5	μSD	5	μs	50	ns
10	μS/D	10	μs	100	ns
20	μSD	20	μs	200	ns
50	μS/D	50	μs	500	ns
.1	mS/D	100	μs	1	μs
.2	mS/D	200	μs	2	μs
.5	mS/D	500	μs	5	μs
1	mS/D	1	ms	10	μs
2	mS/D	2	ms	20	μs
5	mS/D	5	ms	50	μs
10	mS/D	10	ms	100	μs
20	mS/D	20	ms	200	μs
50	mS/D	50	ms	500	μs
.1	S/D	100	ms	1	ms
.2	S/D	200	ms	2	$\mathrm{ms^1}$
.5	S/D	500	ms	5	$\mathrm{ms^1}$

¹7.4 divisions or less.

b. Adjustments. Refer to SECTION IV below.

12. Bandwidth

a. Performance Check

(1) Press TRACK/INDEP pushbutton for INDEP.

- (2) Press Δt pushbutton off.
- (3) Set CH1 and CH 2 input coupling switches down to 50Ω DC.
- (4) Set A SWP SEC/DIV switch for $50~\mu s$ (knob in). Adjust TRACE SEP control fully cw.
 - (5) Set CH 1 VOLTS/DIV switches to 2 mV.
- (6) Press **VERTICAL MODE CH 1** pushbutton on and **VERTICAL MODE CH 2**, **3** and **4** pushbuttons off.
 - (7) Set TRIGGER SOURCE switch up to VERT CH 1.
- (8) Set oscilloscope calibrator for a **CHAN 1**, **LEVEL SINE** mode output of **50 kHz** and adjust amplitude for 6 divisions of vertical display on TI.

NOTE

To perform steps (9), (12), (19) and (23) below; press oscilloscope calibrator **EDIT FIELD** pushbutton as required to place underline under one of the frequency digits.

- (9) Increase oscilloscope calibrator frequency until display is 4.25 divisions. If oscilloscope calibrator frequency is not 100 MHz or greater, perform **b** below.
 - (10) Set CH 1 VOLTS/DIV switch to 20 mV.
- (11) Set oscilloscope calibrator **CHAN 1**, **LEVEL SINE** mode output for a 6 division display at 50 kHz.
- (12) Increase oscilloscope calibrator frequency until display is 4.25 divisions. If oscilloscope calibrator frequency is not 300 MHz or greater, perform **b** below.
 - (13) Set CH 1 VOLTS/DIV switch to 500 mV. Repeat technique of (11) and (12) above.
 - (14) Press VERTICAL MODE CH 1 pushbutton off and VERTICAL MODE CH 2 on.
- (15) Set CH 2 VOLTS/DIV switch to 2 mV, and repeat technique of (7) through (13) above for CH 2.
 - (16) Insert 50 Ω feedthrough terminations on TI CH 3 and CH 4 connections.
- (17) Press **VERTICAL MODE CH 2** pushbutton off and **VERTICAL MODE CH 3** on. Press **CH 3 VOLTS/DIV** pushbutton for **0.1 V**.
- (18) Set oscilloscope calibrator CHAN 3, LEVEL SINE mode output for a 6 division display at 50 kHz.
- (19) Increase oscilloscope calibrator frequency until display is 3.5 divisions. Oscilloscope calibrator frequency will be 300 MHz or greater.
- (20) Press VERTICAL MODE CH 3 pushbutton to off and VERTICAL MODE CH 4 to on.
 - (21) Press CH 4 VOLTS/DIV pushbutton for 0.1 V.
- (22) Set oscilloscope calibrator **CHAN 4**, **LEVEL SINE** mode output for a 6 division display at 50 kHz.

- (23) Increase oscilloscope calibrator frequency until display is 3.5 divisions. Oscilloscope calibrator frequency will be 300 MHz or greater.
 - b. Adjustments. Refer to SECTION IV paragraph 22 below.

13. Calibrator

a. Performance Check

- (1) Press corresponding pushbuttons for indications as listed in (a) and (b) below:
- (a) VERTICAL MODE CH 1 on and VERTICAL MODE CH 2, CH 3 and CH 4 off.
 - (b) **CH** 1 input coupling switch up to 1 **M** Ω **DC**.
 - (2) Set CH 1 VOLTS/DIV switch to 100 mV, and VAR controls fully cw to detent.
- (3) Set A SWP and B SWP SEC/DIV switch to 1 ms (knobs locked) and SEC/DIV VAR control fully cw to detent.
 - (4) Position TRIGGER HOLDOFF control to B ENDS A fully cw to detent.
- (5) Connect TI CH 1 to TI CALIBRATOR terminal and adjust CH 1 VERTICAL POSITION control as necessary to view signal.
- (6) Adjust TI **CH 1 VOLTS/DIV VAR** control for 4 divisions of vertical deflection on TI (do not change setting).
 - (7) Move connection at TI calibrator to oscilloscope calibrator **CHAN 1**.
- (8) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **400 mV** at 1 kHz frequency.
- (9) Adjust TI A TRIGGER LEVEL, CH 1 \$\propto POSITION\$ and \$\phi POSITION\$ controls as necessary to view waveform.
- (10) Rotate oscilloscope calibrator knob below **EDIT** field pushbutton to adjust waveform to 4 divisions of vertical deflection on TI. If oscilloscope calibrator **Err** display is not within \pm 1 percent, perform **b** below.
 - b. Adjustments. Refer to SECTION IV below.

14. Final Procedure

- **a.** Deenergize and disconnect all equipment.
- **b.** Annotate and affix DA label/form in accordance with TB 750-25.

SECTION IV MENU CALIBRATION PROCESS

15. Preliminary Instructions

a. The procedures in paragraph 17 through 22 should be performed only if an out-of-tolerance condition exists in paragraphs 8 through 13 or if an error message on the bottom line of the crt display is TEST 04 xx, where xx is 01, 02, 10, or 11 when POWER pushbutton is pressed to ON.

- **b.** When performing paragraphs **19** through **22** touch only specific control or controls called out in the procedure. Movement of any other control may cause erroneous calibration results.
- c. Within the automatic calibration procedure, the calibration constants for timing, vertical gain, and trigger level are generated by the system microprocessor and stored in nonvolatile memory. The adjustments in CAL 01, 02, 03 should be done in numerical sequence.
- **d.** When performing automatic **CAL** steps, initial setting of front-panel controls is not required.

16. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

- **a.** Press TI **POWER** pushbutton to **OFF** and disconnect TI from the 115 V ac source. Remove protective cover and move CAL/NO CAL jumper (P501) on A5 control board (right side of TI) to CAL position.
- **b.** Connect TI to a 115 V ac source and press **POWER** pushbutton to **ON** and allow at least 20 minutes for equipment warm-up.

NOTE

When **POWER** pushbutton is pressed to **ON**, TI automatically performs a self-test sequence. Upon successful completion of self-test, TI will be in normal operating mode.

NOTE

Throughout this procedure, readout and control messages are displayed along the top and bottom of display (crt).

- **c.** Adjust corresponding controls for indications as listed in (1) through (8) below:
 - (1) VERTICAL MODE CH 1, CH 2, CH 3, and CH 4 on.
 - (2) CH 3 and CH 4 VOLTS/DIV for .1 V.
 - (3) **VERTICAL MODE ADD, INVERT**, and **20 MHz BW LIMIT** off.
 - (4) VERTICAL MODE CHOP/ALT to ALT.
 - (5) **VERTICAL MODE CH 3** and **CH 4** off.
 - (6) **TRIGGER SLOPE** to + (plus).
 - (7) TRACK/INDEP to INDEP.
 - (8) Δt and ΔV to off (no cursors on display).

- **d.** Set corresponding switches up or down for indications as listed in (1) through (4) below:
 - (1) CH 1 and CH 2 input coupling for 1 M Ω DC.
 - (2) TRIGGER MODE to AUTO LVL.
 - (3) TRIGGER SOURCE to VERT.
 - (4) TRIGGER COUPLING to DC.
 - e. Position controls as listed in (1) through (8) below:
 - (1) **VERTICAL POSITION** controls to midrange.
 - (2) Horizontal **POSITION** control to midrange.
 - (3) TRIGGER LEVEL control to midrange.
 - (4) TRIGGER HOLDOFF control fully cw to B ENDS A detent.
 - (5) **SCALE ILLUM** control fully ccw.
- (6) CH 1 and CH 2 VOLTS/DIV switches to 1 00 mV and VAR control fully cw to detent.
 - (7) A SWP SEC/DIV switch to 100 µs (knobs locked) and VAR control cw to detent.
- (8) INTENSITY, FOCUS, and READOUT INTENSITY controls for suitable viewing.

17. Power Supply

a. Performance Check

- (1) Press **VERTICAL MODE** pushbutton **CH 2** to off.
- (2) Connect multimeter **LO** to chassis ground and **HI** to TI J119 (fig. 1) pin 4. If multimeter does not indicate between +9.99 and +10.01 V dc, perform **b** below.
- **b.** Adjustments. Adjust VOLT REF ADJ R1292 (fig 2) until multimeter indicates 10.00 V DC (R).

18. DAC REF and Input Capacitance

a. Performance Check

- (1) Press Δt pushbutton for a Δt display on crt.
- (2) Connect multimeter **LO** to chassis ground and **HI** to J118 (fig 1) pin 2.
- (3) Rotate ΔREF OR DLY POS control ccw until multimeter indication remains at a constant value (approximately -1.25 V dc). Record indication.
- (4) Rotate \triangle **REF OR DLY POS** control cw until multimeter indication remains at a constant value (approximately 1.25 V dc). Record indication.
- (5) Add the absolute values of indications recorded in (3) and (4) above (approximately 2.500 V).
 - (6) Subtract the total in (5) above from 2.500 V, then divide the difference by two.

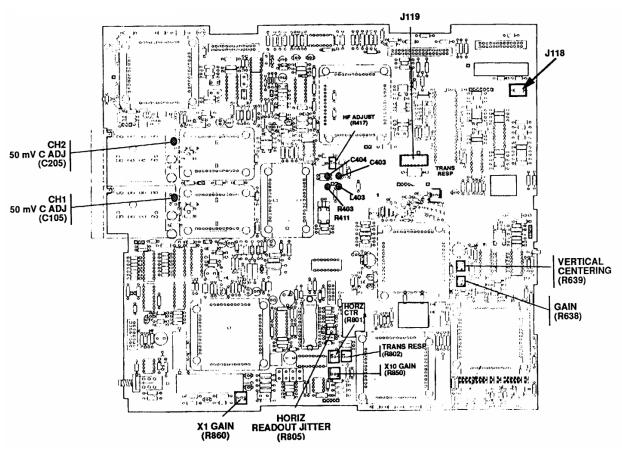


Figure 1. A1 main board - adjustment locations.

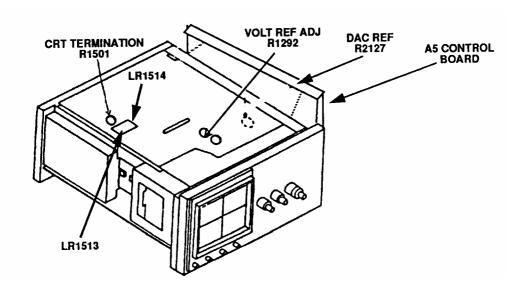


Figure 2. Adjustment locations.

- (7) Adjust DAC REF R2127 (fig 2) to add the (signed) number obtained in (6) above to the reading in (4) above.
 - (8) Repeat (3) through (7) above as necessary to obtain a total DAC range of 2.500 V.
 - (9) Disconnect multimeter.
 - (10) Press Δt pushbuttons to off (no cursor on display).
- (11) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1** to TI **CH 1** using a 5-80 pF standardizer.
- (12) Set oscilloscope calibrator for a **CHAN 1**, **EDGE** mode output of **600 mV** at 1 kHz frequency.
- (13) Rotate oscilloscope calibrator knob below **EDIT** field pushbutton to adjust waveform to 6 divisions of vertical deflection on TI.
- (14) Adjust 5-80 pF standardizer for a square front corner over the first 40 μ s (0.4 division) of the positive portion of waveform. Note waveform front corner for use in (17) below.
 - (15) Change oscilloscope calibrator **EDGE** mode output to **300 mV** at 1 kHz.
- (16) Set **VOLTS/DIV** switch to **50 mV** and rotate oscilloscope calibrator knob below **EDIT** field pushbutton to adjust waveform to 6 divisions of vertical deflection on TI.
- (17) Adjust CH1 50 mV C ADJ (C105) and CH2 50 mV C ADJ (C205) for CH 2 (fig 1) for same waveform front corner as noted in (14) above.
 - (18) Set VOLTS/DIV switch to 100 mV.
- (19) Repeat (13) through (18) above until no change is observed in the waveform front corner.
 - (20) Press VERTICAL MODE CH 1 to off and CH 2 to on.
 - (21) Repeat technique of (11) through (19) above for CH 2.

19. CAL 01 Horizontal

a. Performance Check

- (1) Simultaneously press and hold Δt and ΔV pushbuttons; then press and hold **TRIGGER SLOPE** pushbutton. Hold in all three pushbuttons for approximately 1 second and then release. Top of display will indicate: **DIAGNOSTIC**. **PUSH A/B TRIG TO EXIT**.
 - (2) Push **TRIGGER MODE** switch up to step to **CAL 01** (lower left corner of display).

CAUTION

Upon entering **CAL 01**, the input coupling is automatically set to **50** Ω **DC** and **50** Ω overload protection is disabled. Before starting procedure, make sure any 50 Ω overload condition has been cleared.

NOTE

In this procedure, pressing up and releasing **TRIGGER COUPLING** switch stores current calibration parameter being set and increments routine to next step (except where otherwise noted).

NOTE

Throughout this paragraph the **INTENSITY** and **POSITION** controls may be adjusted as necessary for proper viewing of displayed signal.

- (3) Connect multimeter **LO** to chassis ground and **HI** to TI **CALIBRATOR** output (front panel).
 - (4) Set multimeter to measure dc volts.
- (5) Push up and release upper **TRIGGER COUPLING** switch. The display readout will indicate **ADJ** Δ , (step) 1, **100** μ s and 1 μ s.
 - (6) Multimeter indication will be $0 \text{ mV} \pm 1 \text{ mV}$.
 - (7) Set oscilloscope calibrator for a CHAN 1, MARKER mode output of .1 ms/div.
 - (8) Set **VOLTS/DIV** switch as needed for a convenient signal amplitude.
 - (9) Adjust **TRACE SEP** control as needed to separate the A and B sweeps.
 - (10) Adjust **CH 1 POSITION** control as needed to view both A and B sweeps.
 - (11) Adjust **HORIZONTAL POSITION** control to start trace at the left graticule line.
- (12) Adjust ΔREF OR DLY POS and Δ controls to align both intensified zones with the 6th time marker near graticule center and to superimpose the delayed B sweep time markers.
- (13) Push up and release TRIGGER COUPLING switch. Check multimeter indicates between 398 mV and 402 mV and TI readout indicates ADJ Δ (step) 2, 100 μ s, 1 μ s.
- (14) Disconnect multimeter from TI and adjust ΔREF OR DLY POS control to intensify 2^d time marker.
- (15) Adjust Δ control to intensify 10th time marker and superimpose delayed B sweep time markers within .2 division.
 - (16) Push up and release TRIGGER COUPLING switch.
 - (17) Display readout will indicate ADJ Δ , (step) 3, 300 μ s, 1 μ s.
- (18) Adjust ΔREF OR DLY POS control to intensify 4th time marker and Δ control to intensify 28th time marker and superimpose delayed B sweep markers within 1.2 division.
 - (19) Push up and release TRIGGER COUPLING switch.

NOTE

If adjustments are made in (18) above, display readout will indicate ADJ Δ (step) 2, 200 μs , 1 μs . Repeat (14) through (19) above until no adjustments are made in (18) above.

- (20) If no adjustments were made in (18) above, display readout will indicate ADJ Δ , (step) 4, 100 μ s, 1 μ s.
 - (21) Change oscilloscope calibrator MARKER mode output to 5 μS/D.
- (22) Adjust Δ control ccw until no further movement of B sweep display occurs. Note position of first time marker of B sweep.
- (23) Adjust Δ control cw until 2^d time marker of B sweep moves left and aligns with position noted in (22) above.

NOTE

Movement of ΔREF OR DLY POS control at this point will adversely affect calibration.

- (24) Push up and release **TRIGGER COUPLING** switch. Display readout will indicate **X1**, **X10**, **HRZ CTR**, (step) **5**, **10** µs and two vertical cursors appears on the display.
 - (25) Change oscilloscope calibrator MARKER mode output to 10 μS/D.
- (26) If cursors are not aligned with 2^d and 10^{th} vertical graticule lines, adjust Xl GAIN (R860) (fig 1), and HORZ CTR (R801) (fig 1) to align the two cursors with 2^d and 10^{th} vertical graticule line (R).
- (27) If TI does not display 1 time marker per division \pm 1 minor division, adjust X10 GAIN (R850) (fig. 1) for 1 marker per division (R).
- (28) Push up and release TRIGGER COUPLING switch. Display readout will indicate ADJ Δ , (step) 6, 10 ms, 100 μ s.
- (29) Change oscilloscope calibrator **MARKER** mode output to **10 mS/D** and adjust Δ **REF OR DLY POS** control to intensify 2^d time marker and Δ control to intensify 10th time marker, and superimpose delayed B sweep time markers within .2 division.
- (30) Push up and release TRIGGER COUPLING switch, and position calibration generator controls for 1 μ S/D output.
 - (31) For each step in table 13 do the following:
- (a) Adjust ΔREF OR DLY POS and Δ controls as necessary, to intensify indicated time markers on the A sweep and superimpose displayed B sweep time markers within listed limits.
 - (b) Push up and release TRIGGER COUPLING switch.
 - (32) After completion of step 16 of table 13 TI display will indicate ADJ Δ, (step) 17, 1 μs.
 - (33) Adjust TRACE SEP control fully cw.
- (34) For each step in table 14 (except step 28) adjust Δ control for listed number of time markers over center 8 divisions then push up and release **TRIGGER COUPLING** switch.

Table 13. Timing (CAL 01 Steps 7 Through 16)

	Test instrument	rinning (erin er k	•	,	Test
					instrument
Display					superimposed
step	ΔREF	$\Delta \mathbf{t}$	Oscillosc	ope calibrator	displayed
number	time marker	marker	O	output	B sweep
			se	ettings	± division
7	2	10	1	μS/D	0.2
8	2	10	2	μS/D	0.2
9^{1}	4	28	2	μS/D	1.2
10	2	10	10	μS/D	0.2
11	2	10	50	μS/D	0.2
12^{1}	4	28	50	μS/D	1.2
13	2	10	0.5	μS/D	0.2
14^{1}	4	28	0.5	μS/D	1.2
15	2^{2}	10	0.1	μS/D	0.2
16	2^{2}	10	20	nS/D	0.1

 $^{^{1}}$ If Δ control is adjusted at step 9, 12, or 14 the previous step will be repeated.

Table 14. Timing (CAL 01 Steps 17 Through 29)

Table 14. Timing (CAL 01 Steps 17 Through 29)					
Test instrument		Oscilloscope			
Displayed	Time markers	calibrator			
Step	over 8 divisions	output settings			
17	8	$1 \mu S/D$			
18	24	1 μS/D			
19	8	2 μS/D			
20	24	2 μS/D			
21	8	10 μS/D			
22	8	50 μS/D			
23	24	50 μS/D			
24	8	0.5 μS/D			
25	24	0.5 μS/D			
26	8	0.1 μS/D			
27	8	20 nS/D			
28	2	2 nS/D			
29	8	1 mS/D			

NOTE

If Δ control is adjusted at step 18, 20, 23 or 25 the previous step will be repeated. At step 28, adjust TRANS RESP R802 (fig 1) for precisely two cycles between the 2^d and 10^{th} graticule lines.

(35) After step 29 has been completed display will indicate **DIAGNOSTIC PUSH A/B TRIG TO EXIT**.

20. CAL 02 -Vertical

a. Performance Check

(1) Set TRIGGER MODE switch up to step to CAL 02 (bottom left of display).

²Intensify starts on indicated time marker and may cover more than 1 time marker.

- (2) Push up and release **TRIGGER COUPLING** switch. TI will step from 100 to 111 and display will indicate **CH 1 VAR**, **CH 2 POS**, (step) **111**, **500 mV**.
- (3) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **.5 V** at 1 kHz frequency.
- (4) Adjust **CH 2 POSITION** control to position sweep within 1 division of center horizontal graticule line.
- (5) Adjust CH 1 POSITION and VOLTS/DIV VAR controls for 10 divisions of horizontal deflection.
- (6) Push up and release **TRIGGER COUPLING** switch. Display readout will indicate (step) **MOVE SW**, **CENTER CH 1 POS**, (step) **112**, **500 mV**, and **BWL**.
 - (7) Push up and release TRIGGER COUPLING switch.
- (8) Adjust CH 1 POSITION control until CH 1 input coupling 1 M Ω DC indicator remains illuminated. Push up and release TRIGGER COUPLING switch.

NOTE

In the following steps, if the **LIMIT** message appears, it probably indicates that the upper **TRIGGER COUPLING** switch was pushed before the required signal was applied. Push down and release **TRIGGER COUPLING** switch, verify that the correct signal is applied, and then push up and release **TRIGGER COUPLING** switch.

- (9) Display readout will indicate first step number listed in table 15.
- (10) Push up and release **TRIGGER COUPLING** switch for TI step numbers and calibration generator output settings as listed in table 15.

Table 15. Vertical Attenuator Check

Table 19. Vertical	Attenuator Officer
Test instrument	Oscilloscope
CAL 02	calibrator output
step numbers	settings
$113,114^{1}$.5 V
115	.2 V
116	.1 V
117	50 mV
118	20 mV
119	1 V
120	10 V

¹When step 113 is performed, step 114 is automatically done. No indication of step 114 will be shown unless a **LIMIT** error is encountered.

- (11) After step 120 is performed display readout will indicate MOVE SW, CENTER CH 2 POS step 121, 500 mV, 500 mV, and BWL.
 - (12) Move connection from **CH 1** to **CH 2**.
- (13) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **.5 V** at 1 kHz frequency.

- (14) Push up and release **TRIGGER COUPLING** switch.
- (15) Adjust CH 2 VERTICAL POSITION control until CH 1 input coupling 1 M Ω DC indicator remains illuminated, then push up and release TRIGGER COUPLING switch.
- (16) Display readout will indicate MOVE SW, CENTER CH 2 POS step 122, 500 mV, 500 mV and BWL.
 - (18) Push up and release TRIGGER COUPLING switch.
- (19) Adjust CH 2 VERTICAL POSITION control until CH 1 input coupling 1 M Ω DC indicator remains illuminated, then push up and release TRIGGER COUPLING switch.
 - (20) Display readout will indicate first CAL 02 step number listed in table 16, (123, 124).
- (21) For each step number listed in table 16 apply corresponding calibration generator output, then push up and release **TRIGGER COUPLING** switch.

Table 16. Vertical Attenuator Check

Test instrument CAL 02	Oscilloscope calibrator
Step numbers	output settings
$123{,}124^{\ 1}$	0.5 V
125	0.2 V
126	0.1 V
127	50 mV
128	20 mV
129	1 V
130	10 V

¹When step 123 is performed, step 124 is also automatically done. No indication of step 124 will be shown unless a **LIMIT** error is encountered.

- (22) After step 130 is completed display readout will indicate MOVE SW, CENTER CH 2 POS, step 131, 10 V, [arrow down] 10 V, and BWL.
 - (23) Push up and release **TRIGGER COUPLING** switch.
- (24) Adjust CH 2 VERTICAL POSITION control until CH 1 input coupling 1 M Ω DC indicator remains illuminated, then push up and release TRIGGER COUPLING switch. The TI will automatically increment through steps 132 to 142.
- (25) Display readout will indicate MOVE SW, CENTER CH 1 POS step 142, 50 mV and BWL.
- (26) Move connection from **CH 2** to **CH 1** and set oscilloscope calibrator for a **50 mV** 1 kHz output, then push up and release **TRIGGER COUPLING** switch.
- (27) Adjust CH 1 VERTICAL POSITION control until CH 1 input coupling 1 M Ω DC indicator remains illuminated, then push up and release TRIGGER COUPLING switch. Wait approximately 10 seconds for automatic calibration of the ΔV cursors.
 - (28) Display readout will indicate **VERTICAL CENTER** and **GAIN**.
- (29) Adjust VERTICAL CENTERING R639 (fig. 1) to center cursors on the 0 percent and 100 percent dotted graticule lines.

(30) Push up and release TRIGGER COUPLING switch. Display readout will indicate DIAGNOSTIC PUSH A/B TRIG TO EXIT.

21. CAL 03 Triggering

a. Performance Check

- (1) Set TRIGGER MODE switch up to step to CAL 03 (bottom left of display).
- (2) Push up and release **TRIGGER COUPLING** switch.
- (3) TI automatically steps from 201 through 214 and stops at 215 and display readout indicates CH 1, 500 mV, (step) 215.
 - (4) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1** to TI **CH 1**.
- (5) Set oscilloscope calibrator for a **CHAN 1**, **VOLTAGE** mode output of **.5 V** at 1 kHz frequency.
- (6) Push and release TRIGGER COUPLING switch. Display readout will indicate CH 1, 500 mV, (step) 216.
- (7) Push up and release **TRIGGER COUPLING** switch. Display readout will indicate **CH 2**, **500 mV**, (step) **217**.
 - (8) Move connection from **CH 1** to **CH 2** and repeat (5) above.
- (9) Push and release **TRIGGER COUPLING** switch. Display readout will indicate **CH 3, 500 mV**, (step) **218**.
 - (10) Move connection from CH 2 to CH 3 and repeat (5) above.
- (11) Push and release **TRIGGER COUPLING** switch. Display readout will indicate **CH 3**, **2 V**, (step) **219**.
 - (12) Change oscilloscope calibrator **VOLTAGE** mode output to **2 V**.
- (13) Push and release **TRIGGER COUPLING** switch. Display readout will indicate **CH 4, 500 mV**, (step) **220**.
 - (14) Move connection from CH 3 to CH 4.
 - (15) Change oscilloscope calibrator **VOLTAGE** mode output to .5 V.
- (16) Push and release TRIGGER COUPLING switch. Display will indicate CH 4, 2 V, (step) 221.
 - (17) Change oscilloscope calibrator **VOLTAGE** mode output to **2 V**.
- (18) Push and release **TRIGGER COUPLING** switch. Display will indicate **DIAGNOSTIC**. **PUSH AB TRIG TO EXIT**.
- (19) Press **A/B TRIG** pushbutton to exit, press **POWER** pushbutton to **OFF**, and move CAL/ NO CAL jumper to NO CAL position, press **POWER** pushbutton to **ON**.

22. CAL 06 Vertical Transient Response

a. Performance Check

(1) Press corresponding pushbutton for indications as listed in (a) through (g) below:

- (a) VERTICAL MODE CH 1 and CH 2 to on.
- (b) **VERTICAL MODE CH 3** and **CH 4** to off.
- (c) **ADD, INVERT**, and **BW LIMIT** to off.
- (d) **ALT/CHOP** to **ALT**.
- (e) **TRIGGER SLOPE** to + (plus).
- (f) TRACKING/INDEP to INDEP.
- (g) ΔV to on (RATIO readout).
- (2) Set corresponding switch up or down for indications as listed in (a) through (d) below:
 - (a) TRIGGER MODE to AUTO LVL.
 - (b) TRIGGER SOURCE to VERT.
 - (c) TRIGGER COUPLING to DC.
 - (d) CH 1 and CH 2 input coupling to 50Ω DC.
- (3) Position corresponding controls for indications as listed in (a) through (m) below:
 - (a) CH 1 and CH 2 VOLTS/DIV to 10 mV.
 - (b) CH 1 VAR ccw (out of detent).
 - (c) **CH 2 VAR** cw to detent.
 - (d) CH 1 and CH 2 VERTICAL POSITION to midrange.
 - (e) A and B SEC/DIV to 20 ns (knobs locked).
 - (f) A and B SEC/DIV VAR to detent.
 - (g) Horizontal **POSITION** to midrange.
 - (h) TRIGGER LEVEL to midrange.
 - (i) **TRIGGER HOLDOFF** to detent.
- (j) Δ REF OR DLY POS and Δ to place cursors near the 3^d line above and 3^d line below graticule center (6 division spacing).
 - (k) **INTENSITY** control to left of center.
 - (l) **READOUT INTENSITY** to right of center.
 - (m) **FOCUS** for best focused display.

NOTE

Crt termination, high frequency transient response, vertical gain, vertical centering, and readout jitter adjustments are interactive. This procedure optimizes these adjustments together.

- (4) Press CH 2 pushbutton off and adjust CH 1 VOLTS/DIV VAR control for a RATIO readout.
- (5) Adjust ΔREF OR DLY POS control ccw until RATIO readout is constant (>130 percent).
 - (6) Adjust Δ control until readout display indicates 130.0 percent.
- (7) One cursor should be near bottom horizontal graticule line and the other cursor near dotted graticule line marked 100(percent).
- (8) Adjust ΔREF OR DLY POS control until the readout displays 100.0 percent. Cursors should now be on or near dotted graticule lines marked 0 percent and 100 percent.

(9) Return CH 1 VOLTS/DIV VAR control to detent position.

NOTE

Controls adjusted in (4) through (7) above should not be moved during the balance of this procedure. If they are accidentally moved, repeat the procedure from the beginning.

- (10) Connect oscilloscope calibrator **SOURCE/MEASURE CHAN 1** to TI **CH 1** using a Xl0, and X2 attenuator.
- (11) Set oscilloscope calibrator for a **CHAN 1**, **EDGE** mode output of **600 mV** at 100 kHz frequency.
- (12) Adjust **TRIGGER LEVEL** control for a stable display and rotate oscilloscope calibrator knob below **EDIT** field pushbutton to adjust waveform to 5 divisions of vertical deflection on TI.
- (13) Adjust CRT TERMINATION R1501 (fig 2) for best flat top approximately 5 ns past rising edge of waveform. Squeezing the output leads of the termination inductors (LR1513 and LR1514) (fig. 2) toward each other will reduce the spike which may be present approximately 6 ns behind the leading edge.
- (14) Adjust C404 and R403 (fig 1) alternately for best flat top on first 10 ns of waveform.
- (15) Repeat technique of (12) and (13) above as necessary for best flat top over first 20 ns of waveform.
- (16) Adjust GAIN (R638) (fig 1) and VERTICAL CENTERING (R639) (fig. 1) to align cursors with dotted 0 percent and 100 percent graticule lines.
 - (17) Press ΔV pushbutton off (cursors off).
- (18) Adjust R411, C403, and HF ADJUST R417 (fig. 1) alternately for best square front corner and best flat top of waveform. If front corner is overshot, adjust small coil L403 (fig. 1) by spreading coil leads apart, then readjust R411 and C403 (fig. 1).
 - (19) Move connection from **CH 1** to **CH 2**.
- (20) Press **VERTICAL MODE CH 1** pushbutton to off and **VERTICAL MODE CH 2** pushbutton to on.
- (21) Repeat technique of (14) and (18) above for CH 2. Switch between CH 1 and CH 2 as necessary, until both CH 2 and CH 1 aberrations are minimized. When minimized, leave CH 2 selected.
 - (22) Connect oscilloscope calibrator SOURCE/MEASURE CHAN 1 to TI CH 2.
- (23) Set oscilloscope calibrator **LEVEL SINE** mode for a **50** kHz output and adjust amplitude for 6 divisions of vertical deflection. Adjust **A** and **B SEC/DIV** switch and **CH 2 POSITION** controls for suitable viewing.

NOTE

To perform step below; press oscilloscope calibrator **EDIT FIELD** pushbutton as required to place underline under one of the frequency digits.

- (24) Increase oscilloscope calibrator frequency to 300 MHz. Display amplitude should be between 4.5 and 5 divisions.
- (25) Sweep oscilloscope calibrator frequency from 300 to 250 MHz. If display amplitude is not 4.4 divisions or greater, make necessary compromises to settings in (14) and (18) above to obtain best flat top with proper bandwidth. HF ADJUST (R417) (fig. 1) will have most effect on bandwidth.
- (26) Move connection from TI CH 2 to TI CH 1 and press VERTICAL MODE CH 1 pushbutton to on and CH 2 VERTICAL MODE CH 2 off.
 - (27) Repeat technique of (22) through (25) for CH 1.
- (28) If readjustment of HF ADJ R417 (fig. 1) was necessary, repeat (13) through (25) above.

23. Final Procedure

- a. Press POWER pushbutton to OFF, and replace protective cover.
- b. Press POWER pushbutton to ON and repeat paragraphs 7 through 13.

By Order of the Secretary of the Army:

GEORGE W. CASEY, JR. General, United States Army Chief of Staff

Official:

JOYCE E. MORROW
Administrative Assistant to the
Secretary of the Army

0726809

Distribution:

To be distributed in accordance with the initial distribution number (IDN) 344488, requirements for calibration procedure TB 9-6625-2293-24.

INSTRUCTIONS FOR SUBMITTING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@redstone.army.mil

To: <2028@redstone.army.mil

Subject: DA Form 2028 1. **From**: Joe Smith

2. Unit: home

Address: 4300 Park
 City: Hometown

St: MO
 Zip: 77777

7. Date Sent: 19-OCT -93
 8. Pub no: 55-2840-229-23

9. Pub Title: TM

10. Publication Date: 04-JUL-85

11. Change Number: 712. Submitter Rank: MSG13. Submitter FName: Joe14. Submitter MName: T

15. Submitter LName: Smith

16. Submitter Phone: 123-123-1234

17. **Problem**: 118. Page: 219. Paragraph: 3

20. Line: 421. NSN: 522. Reference: 623. Figure: 724. Table: 8

25. Item: 926. Total: 123

27. Text

This is the text for the problem below line 27.

PIN: 084367-000